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Abstract
This study presents a simple and robust three-dimensional human hepatic tissue model to emulate steatotic and fibrotic 
conditions and provide an in vitro model for drug testing and mechanistic studies. Using a photolithographic biofabrication 
method with a photomask featuring hexagonal units, liver cells, including a human hepatic cell line (HepG2-C3A) and a 
human hepatic stellate cell line (LX-2) were embedded in gelatin methacryloyl hydrogel. Hepatic steatosis was induced by 
supraphysiological concentration of free fatty acids; hepatic fibrosis was induced by transforming growth factor-β1. Induction 
of steatosis was confirmed by Oil Red O and BODIPY staining and was inhibited with toyocamycin and obeticholic acid. 
Induction of fibrosis was confirmed by immunostaining for collagen type I and alpha smooth muscle actin and inhibited by 
rapamycin and curcumin treatment. This model was further preliminarily validated using primary human hepatocytes in a 
similar setup. These constructs provide a viable, biologically relevant, and higher throughput model of hepatic steatosis and 
fibrosis and may facilitate the study of the mechanisms of disease and testing of liver-directed drugs.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is one of the most 
common liver diseases affecting 25% of the global popula-
tion [1]. NAFLD represents a wide range of liver diseases 
caused by the excess fat accumulation in hepatocytes in the 
liver. It includes simple hepatic steatosis without inflam-
mation and nonalcoholic steatohepatitis (NASH) that can 
further progress to fibrosis, cirrhosis, and hepatocellular car-
cinoma [2]. Steatosis is marked by the presence of excess fat 
within the cytoplasm of hepatocytes, i.e., liver fat level more 
than 5% of the liver weight [3]. Similarly, NASH represents 
hepatic steatosis in conjunction with liver inflammation 
and injury. NASH can include fibrosis characterized by the 
deposition of type I collagen [4]. NASH is associated with 
obesity, type 2 diabetes, glucose intolerance, and cardiovas-
cular diseases [5–7].

Hepatic steatosis usually occurs as a result of an imbal-
ance in fatty acid metabolism, i.e., an imbalance between 
fatty acid uptake, synthesis, and catabolism. This results 
in the formation of intracellular fat droplets [8], ultimately 
leading to portal and lobular inflammation and hepatic injury 
[9]. Approximately 20% of patients with hepatic steatosis 
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have been found to have hepatic inflammation characterized 
by infiltration of inflammatory cells including macrophages, 
dendritic cells, and T lymphocytes [9]. Accumulation of fat 
in liver also leads to the development of insulin resistance 
[10]. Due to these events, steatosis can result in hepatic 
inflammation and fibrosis via hepatic stellate cell activa-
tion. Cirrhosis and hepatocellular carcinoma are the most 
common causes of NASH-associated morbidity and mor-
tality [11]. NASH-associated hepatocellular carcinoma can 
also occur in the absence of cirrhosis [12]. Although stud-
ies have suggested that hepatic fat accumulation is essential 
for the development of NASH, the molecular mechanisms 
underlying NASH initiation and progression have not been 
fully elucidated yet.

Understanding the molecular mechanisms underlying 
the physiopathology of NAFLD has mostly been under-
taken through animal studies using genetic models or diet-
induced models, which were later corroborated by clinical 
studies [13]. Despite the intensive investigation of therapeu-
tic regimens for NAFLD, there is no drug currently FDA 
approved for the treatment for NASH [14]. This has been 
attributed partly to the lack of reliable high(er)-throughput 
liver disease models. Recently, in vitro approaches have been 
explored to study the progression of NAFLD. However, few 
in vitro NAFLD models have been developed. Generally, 
immortalized cell lines are widely used to develop in vitro 
models for research. Most current models for NAFLD, 
including in vitro cell and animal models, fail to recapitulate 
human liver pathophysiological models due to inappropri-
ate cellular compositions and inducers used for the disease 
modeling [15, 16].

During the past decade, several scaffold-free and scaffold-
based in vitro models have been developed to study fatty 
liver disease, including microfluidic liver-on-a-chip devices, 
hepatic sandwich culture models, and three-dimensional 
(3D) hepatic spheroids [17–23]. For example, 3D-bioprinted 
human liver tissue constructs, comprised of human hepato-
cytes, hepatic stellate cells (HSCs), and endothelial cells 
(ECs), were utilized to study transforming growth factor-β1 
(TGF-β1)-, methotrexate (MTX)-, and thioacetamide-
induced fibrosis [24]. They further modified this liver tissue 
model by adding Kupffer cells (KCs) and studied the role 
of KCs in TGF-β1- and MTX-mediated fibrogenesis [25].

However, limitations of most of these in vitro liver mod-
els include insufficient liver architecture, suboptimal cellular 
phenotypes, limited experimental longevity or scalability, 
or/and inappropriate disease-inducers. Thus, there remains 
a need for better in vitro liver models that could recapitulate 
the in vivo pathophysiology of human NAFLD. 3D biofab-
rication technologies have been emerging as a promising 
strategy for the fabrication of tissues in vitro that could serve 
as tissue models for high(er)-throughput in vitro studies, 
implants for in vivo studies, or to replace diseased tissues 

[26]. Photolithographic biofabrication methods use either 
photomask-based photolithography or maskless photoli-
thography enabling the precise positioning of cell-embedded 
bioink in a predefined pattern to closely mimic the archi-
tecture of real tissue or organ [27–29]. Photomask-based 
photolithography involves UV exposure of a light-sensitive 
bioink through the photoresist mask wherein the regions 
of the bioink solution exposed to light are cured resulting 
in 3D scaffolds according to the geometric pattern of the 
photomask used [30]. The most common bioink formula-
tions include hydrogel precursors due to their biocompat-
ibility, porosity, mechanical properties, and resemblance to 
the native extracellular matrix (ECM) [31]. The photolitho-
graphic method has been employed to fabricate 3D tissue 
scaffolds using various cell types, including hepatocytes 
[32], NIH 3T3-fibroblasts, C2C12 myoblasts, human hepa-
tocellular carcinoma cells (HepG2), human umbilical vein 
ECs (HUVECs) [33], HT1080 fibrosarcoma cells [34], and 
mouse embryonic stem cells [35]. For example, the digital 
light processing (DLP)-based 3D bioprinting method was 
used to develop 3D hepatic models wherein human-induced 
pluripotent stem cell-derived hepatic progenitor cells 
(hiPSC-HPCs), HUVECs, and adipose-derived stem cells 
(ADSCs) were patterned in a liver lobule-like structure, and 
hiPSC-HPCs maturation and functional preservation within 
3D liver tissue structures were investigated [28].

Here, we report the development of a 3D human NAFLD 
models utilizing a simple yet robust photopatterning-based 
biofabrication approach. We demonstrated the accumulation 
of fat by hepatocytes within 3D hepatic tissue constructs 
after exposure to free fatty acids. The 3D hepatic tissues 
further exhibited enhanced type I collagen deposition by 
the HSCs after TGF-β1 treatment. Moreover, the free fatty 
acid-induced steatotic tissues and TGF-β1-induced fibrotic 
tissues were successfully treated with antisteatotic and anti-
fibrotic drugs, respectively. Taken together, these in vitro 
3D-biofabricated NAFLD models could provide a platform 
to study pathogenesis of steatosis and fibrosis, as well as 
serve as an accurate NAFLD model for drug screening.

Materials and methods

Gelatin from porcine skin (type-A, 300 bloom), methacrylic 
anhydride, calcium chloride  (CaCl2), 2-hydroxy-4′-(2-
hydroxyethoxy)-2-methylpropiophenone (Irgacure 2959), 
Triton X-100, bovine serum albumin (BSA), urea assay 
kit, oleic acid, palmitic acid, isopropyl alcohol, obeticholic 
acid, toyocamycin, rapamycin (sirolimus) solution, cur-
cumin, and Oil Red O were purchased from Sigma-Aldrich 
(MO, USA). Dulbecco’s modified Eagle medium (DMEM), 
Dulbecco’s phosphate-buffered saline (DPBS), fetal bovine 
serum (FBS), trypsin-ethylenediaminetetraacetic acid 
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(trypsin–EDTA), penicillin/streptomycin (P/S), antibi-
otic–antimycotic solution stabilized (Anti–Anti, 100×), 
4′,6-diamidino-2-phenylindole (DAPI), formalin (10% 
w/v), Live/Dead® Viability/Cytotoxicity Kit, Alexa  Fluor® 
594-phalloidin, BODIPY™ 493/503, CM-DiI dye, green 
CMFDA (5-chloromethylfluorescein diacetate) dye, blue 
CMAC (7-amino-4-chloromethylcoumarin) dye, and dialy-
sis membrane  (Mw cutoff: 12,000-14,000 Da) were obtained 
from Thermo Fisher Scientific (MA, USA). Stellate cell 
medium and stellate cell growth supplements were acquired 
from ScienCell (CA, USA). Human albumin ELISA kit, rab-
bit anticollagen I antibody, rabbit antialpha smooth muscle 
actin (α-SMA) antibody, and Alexa  Fluor® 594-conjugated 
goat antirabbit secondary antibody were purchased from 
Abcam (MA, USA). Human TGF-β1 was obtained from 
PeproTech (NJ, USA). Sylgard 184 silicone elastomer kit for 
the fabrication of polydimethylsiloxane (PDMS) devices was 
obtained from Dow Corning (MI, USA). Deckgläser cover 
glass slides of 15 mm in diameter were obtained from Caro-
lina Biological Supply (NC, USA). Syringe filters (0.22 μm 
in pore size) were purchased from VWR International (MA, 
USA). The honeycomb-patterned photomask was obtained 
CAD/ART Services (Bandon, OR). All other chemicals used 
in this study were obtained from Sigma-Aldrich unless oth-
erwise mentioned.

Synthesis of gelatin methacryloyl (GelMA)

GelMA was synthesized as described by us previously 
[36–38]. The synthesis of GelMA was done by the chemi-
cal reaction between gelatin and methacrylic anhydride at 
50 °C wherein the hydroxyl and amine groups in the amino 
acids of gelatin were substituted by methacryloyl groups 
[39]. Briefly, 10 g of type A gelatin from porcine skin was 
dissolved in 100 mL of DPBS at 60 °C and 8.0 mL of meth-
acrylic anhydride was added to gelatin solution dropwise 
with continuous stirring. The reaction was carried out at 
50 °C for 3 h and then quenched by a fivefold dilution with 
warm DPBS (40 °C). The product obtained was dialyzed 
against warm distilled water for 7 days using a dialysis 
membrane (Mw cutoff 12–14 kDa) to remove the unreacted 
methacrylic anhydride. The dialyzed solution was then lyo-
philized to obtain GelMA in the form of a white porous 
foam. The lyophilized GelMA was stored at room tempera-
ture until further use. 0.3% Irgacure 2959 was added for 
Photocrosslinking of GelMA.

Cells

The human hepatocellular carcinoma cell line variant C3A 
(HepG2-C3A cells) was obtained from American Type Cul-
ture Collection (VA, USA), whereas the human HSC line 
(LX-2 cells) was obtained from MilliporeSigma (MA, USA). 

HepG2-C3A cells were cultured in DMEM supplemented 
with 10% (v/v) FBS and 1% (v/v) P/S or anti–anti, while 
LX-2 cells were cultured in stellate cell medium (SteCM) 
supplemented with 1% (v/v) stellate cell growth supple-
ments, 2% (v/v) FBS and 1% (v/v) P/S or anti–anti. The 
cells were incubated at 37 °C and 5%  CO2 in a 95% humidi-
fied cell incubator until 70–80% confluence. The respective 
culture media were replaced every 3 days.

Fabrication of the 3D human liver tissue model

Approximately 80%-confluent HepG2-C3A cells and 
LX-2 cells were washed with DPBS (1×) in their respec-
tive T75 flasks after removal of the media. Then, 3 mL 
of trypsin–EDTA solution (1×) was added and incubated 
at 37 °C in the incubator for 5 min until the cells were 
detached, followed by the inhibition of trypsin–EDTA with 
DMEM supplemented with 10% (v/v) FBS. Both HepG2-
C3A cells and LX-2 cells were collected into 15-mL falcon 
tubes separately, centrifuged at 1000 rpm for 5 min at room 
temperature and were resuspended in fresh DMEM and 
SteCM, respectively.

The 10% (w/v) GelMA hydrogel precursor solution con-
taining 0.6% (w/v) Irgacure 2959 was prepared by dissolv-
ing GelMA and Irgacure 2959 powder in DPBS at 50  °C 
and sterilized by filtration through a sterile 0.22-μm syringe 
filter. The sterilized GelMA precursor solution was kept at 
37  °C in an incubator and protected from light until use.

Both HepG2-C3A cells and LX-2 cells were washed twice 
with DPBS (1×) and resuspended in DPBS before adding to 
the GelMA precursor solution. Immediately prior to the fab-
rication of the hepatic tissue constructs, the HepG2-C3A cell 
suspension was mixed with the 10% (w/v) GelMA hydro-
gel precursor solution, at a 1:1 ratio, to obtain 5% GelMA 
hydrogel precursor with 3 × 106 cells/mL. Similarly, the het-
erogeneous cell suspension, containing 2.5 × 106 cells/mL 
of HepG2-C3A cells and 1 × 106 cells/mL of LX-2 cells, 
was added to 10% (w/v) GelMA hydrogel precursor solution 
(1:1) to obtain 5% GelMA with 3.5 × 106 cells/mL.

Subsequently, 70 μL of the GelMA precursor solution 
was placed in a circular PDMS mold with 50 µm depth and 
12 mm diameter and was covered with a piece of circular 
cover glass. On top of the circular cover glass slide, the pho-
tomask, having hexagonal units resembling the human liver 
lobule, was placed and exposed under UV light of 0.5 W/
cm2 (OmniCure S2000 Spot UV Curing System) for 30 s 
to obtain the 3D lobular human liver tissue construct. The 
cover glass with the photopatterned liver tissue construct 
was transferred into a well of a 24-well plate and washed 
with DPBS (1×) to remove uncross-linked GelMA precursor 
from the construct; 400 μL/well of cell-specific medium was 
added into each well, and tissue constructs were incubated 
at 37 °C and 5%  CO2 in a 95%-humidified cell incubator 
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for downstream experimental analyses. HepG2-C3A con-
structs were incubated in DMEM supplemented with 10% 
(v/v) FBS and 1% (v/v) P/S or anti–anti, whereas HepG2-
C3A + LX-2 constructs were incubated in common medium 
containing 1:1 ratio of the DMEM complete medium and 
the SteCM complete medium. To visualize the localization 
of HepG2-C3A cells and LX-2 cells within the constructs, 
HepG2-C3A cells were labeled with the green (CMFDA) or 
blue (CMAC) cell tracker and LX-2 cells were labeled with 
red cell tracker (CM-DiI) before tissue fabrication, when 
necessary.

Cell viability assay

The Live/Dead® Viability/Cytotoxicity Kit was utilized to 
evaluate cell viability according to manufacturer’s instruc-
tions. Briefly, the 3D human liver tissue constructs were 
washed three times with DPBS and incubated with 100 µL/
well of the combined Live/Dead assay reagents [2 μM of 
calcein AM and 4 μM of ethidium homodimer I (EthD-1)] 
for 20 min at 37 °C in 5%  CO2. The cells were then washed 
with DPBS and observed under an Axio Observer inverted 
fluorescence microscope (Zeiss, NY, USA). Percentages of 
viable cells were determined by using the Image J software 
(National Institutes of Health, MD, USA).

Induction of steatosis

The 3D human liver tissue constructs were exposed to 
their specific physiological media supplemented with free 
fatty acids at day 4 of fabrication; 80 mM each of palmitic 
acid and oleic acid was prepared in 100% isopropanol. A 
combination of the saturated palmitic acid (200 µM) and 
unsaturated oleic acid (200 µM) was used at a 1:1 ratio to 
resemble human plasma concentrations of free fatty acids. 
The scaffolds were exposed to free fatty acids for 24 h at 
37 °C and 5%  CO2 in a 95%-humidified cell incubator for 
downstream studies.

Oil Red O and BODIPY staining

Free fatty acid uptake and accumulation in the liver tissue 
constructs were assessed by Oil Red O staining and BODIPY 
493/503 staining according to manufacturer’s instructions. 
For Oil Red O staining, the liver tissue constructs exposed 
to free fatty acids were washed three times with DPBS (1×) 
and fixed with 10% formalin for 30 min at room temperature. 
The scaffolds were washed twice with distilled water, treated 
with 60% isopropanol for 5 min, and then stained with Oil 
Red O solution (0.3% in 60% isopropanol) for 20 min at 
room temperature. After washing five times with distilled 
water, the constructs were observed and imaged under a 
fluorescence microscope.

To extract Oil Red O, 400 μL/well of 100% isopropanol 
was added to the tissue scaffolds and incubated at room tem-
perature for 10 min with gentle shaking on an orbital shaker. 
Hundred microliters of the Oil Red O extract was transferred 
to 96-well plate in triplicates, and absorption was measured 
at 492 nm on a microplate reader (Tecan, Salzburg, Austria).

Similarly, 5 mM of the BODIPY staining stock solution 
was prepared by dissolving 1.3 mg of BODIPY 493/503 
in 1 mL of anhydrous dimethyl sulfoxide (DMSO); 2 μM 
of BODIPY staining solution was then prepared by 1:2500 
dilution in DPBS (1×). The liver tissue constructs exposed 
to free fatty acids were overlaid with 400 μL/well of the 
BODIPY staining solution after washing three times with 
DPBS (1×) and incubated for 5 min at room temperature. 
The constructs were then washed three times with DPBS 
(1×) and imaged under a fluorescence microscope.

Antisteatotic drug treatment

Toyocamycin and obeticholic acid were used as antisteatotic 
drugs. Stock solutions of both of these drugs were prepared 
in DMSO. The free fatty acid-induced steatotic liver tis-
sue constructs were treated with 0, 10, and 20 µM of the 
drugs separately and prepared by diluting stock solutions in 
construct-specific media. The constructs were incubated at 
37 °C and 5%  CO2 in a 95%-humidified cell incubator. After 
48 h of incubation, the media were assessed for albumin and 
urea measurements, while the tissue constructs were stained 
with Oil Red O and BODIPY 493/503 as described above.

Induction of fibrosis

10 µg/mL of the TGF-β1 stock solution was prepared in 
DPBS (1×). To induce fibrosis, the 3D human liver tissue 
constructs were exposed to construct-specific media con-
taining 25 ng/mL of TGF-β1 at day 4 of fabrication and 
incubated for 24 h at 37 °C and 5%  CO2 in a 95%-humidified 
incubator for further studies.

Immunocytochemical analyses

The TGF-β1-induced fibrotic liver tissue constructs were 
washed with DPBS and fixed with 10% formalin for 30 min 
at room temperature. The constructs were washed with 
DPBS and incubated with the permeabilization buffer (0.1% 
(v/v) Triton X-100 in DPBS] for 1 h. The constructs were 
then blocked with 5% (w/v) goat serum in DPBS for 2 h at 
room temperature and incubated with anticollagen I anti-
body or antialpha smooth muscle actin (α-SMA) antibody 
(1:200 dilution) overnight at 4 °C. The samples were washed 
with DPBS and incubated with the Alexa  Fluor® 594-con-
jugated goat antirabbit secondary antibody (1:200 dilution) 
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overnight at 4 °C. Finally, the nuclei were counterstained 
with DAPI after washing with DPBS and examined under a 
fluorescence microscope.

Antifibrotic drug treatment

Rapamycin and curcumin were used as antifibrotic drugs. 
1.0 mg/mL of rapamycin was dissolved in acetonitrile. 1 mg/
mL of the curcumin solution was prepared in DMSO. The 
TGF-β1-induced fibrotic liver tissue constructs were treated 
with 0, 10, and 20 nM of the drugs separately, prepared 
by diluting stock solutions in construct-specific media. 
The constructs were incubated at 37 °C and 5%  CO2 in a 
95%-humidified incubator for 48 h. After incubation, the 
media were collected for albumin and urea measurements, 
while the tissue scaffolds were immunostained with anticol-
lagen I antibody or antialpha smooth muscle actin (α-SMA) 
antibody as described above.

Analyses of albumin and urea productions

Albumin secreted by the liver cells within the constructs 
was measured using the albumin ELISA kit according to 
the manufacturer’s protocol. Briefly, all the reagents were 
brought to room temperature before starting the assay. Fifty 
microliters of the standard or sample was added to each 
well of albumin ELISA plate and incubated for 1 h at room 
temperature. Each well was then washed three times with 
200 μL of the wash buffer (1×). Fifty microliters of the bioti-
nylated albumin antibody was added to each well and incu-
bated for 30 min. Each well was washed again three times 
with 200 μL of the wash buffer (1×), and 50 μL of the 1× 
SP conjugate was added to each well. After incubation for 
30 min, followed by washing, 50 μL of the chromogen sub-
strate was added per well and incubated for 20 min. Finally, 
50 μL of the stop solution was added to each well and the 
absorbance was read at 450 nm on a microplate reader.

Similarly, urea produced by the liver cells within the con-
structs was measured using a urea assay kit, according to the 
manufacturer’s instructions. Briefly, 0, 1, 2, 3, 4, and 5 nmol 
of urea standards were prepared by diluting 100 nmol/mL of 
the urea standard solution with the urea assay buffer. Fifty 
microliters of the standard or sample was added to each well 
of a flat-bottom 96-well plate. Then, 50 μL of the freshly 
prepared reaction mix was added to each well and mixed 
quickly by gently rocking the plate. The plate was incubated 
at 37 °C for 1 h and absorbance was measured at 570 nm on 
the microplate reader.

Statistical analyses

All experiments were done in three technical replicates, and 
the results were presented as means ± standard deviations. 

Statistical analyses were performed by pairwise t test using 
GraphPad Prism Software (CA, USA), and p ≤ 0.05 was 
considered as statistically significant (*p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001).

Results

The 3D lobular hepatic tissue model

The 3D hepatic tissue model was generated by a photolitho-
graphic biofabrication method using a photomask featur-
ing hexagonal units (Fig. S1), and hepatic cells [a human 
hepatocellular carcinoma cell line (HepG2-C3A cells) and 
a human HSC line (LX-2 cells)] embedded in 5% (w/v) 
GelMA (Fig. 1a). HepG2-C3A and LX-2 cells are widely 
used as model cells for the fabrication of engineered in vitro 
liver tissues including NASH models [40–42]. The liver is 
generally comprised of approximately 60–70% of hepato-
cytes and 30–40% of nonparenchymal cells [43]. Since 
stellate cells are best known for their critical role in fibro-
sis [44], LX-2 HSCs were chosen as the nonparenchymal 
cell population in the study. Further, the HepG2-C3A and 
LX-2 cell ratio was chosen to give the close resemblance of 
the cellular distribution in native liver, approximately 70% 
hepatocytes and 30% nonparenchymal cells [45, 46].

GelMA has been widely used to fabricate in vitro tissue 
scaffolds due to its physicochemical properties, biodegra-
dability, photocross-linking ability, and tunable mechanical 
properties [47–49]. GelMA is obtained by the methacryloyl 
modification of gelatin, a hydrolytic product of collagen that 
is the main component of the native ECM. GelMA features 
arginine–glutamine–aspartic acid (RGD) sequences that pro-
mote cell adhesion and proliferation [50]. Matrix stiffness 
of photopolymerized 5% (w/v) GelMA has been found to 
be similar to the native liver tissue [28]. Therefore, liver tis-
sue constructs with native liver tissue-like matrix stiffness 
were fabricated using 5% (w/v) GelMA that supported the 
proliferation and growth of hepatic cells.

The 3D human liver tissue constructs of approximately 
5 mm in size and 500 µm in thickness were comprised of 
hexagonal lobules arranged in a honeycomb-like configu-
ration, resembling the native liver lobules (Fig. 1b). These 
constructs containing HepG2-C3A cells and LX-2 cells 
(hereafter referred to as HLT-2 constructs) were cultured 
in the coculture medium prepared by mixing 1:1 ratio of 
DMEM complete medium and SteCM complete medium 
at 37 °C and 5%  CO2 in a 95%-humidified incubator for 
downstream studies at designated times. The hepatic tissue 
constructs prepared with only HepG2-C3A cells (hereafter 
referred to as HLT-1 constructs) were used as controls 
(Fig. S2). The viability of cells within the hepatic tissue 
constructs was found to increase gradually with culture 
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time and reached more than 90% at day 14 for both HLT-1 
(Fig. 1c, d) and HLT-2 (Fig. 1e, f) constructs. Even though 
these cells were initially mixed during fabrication, inter-
estingly, HepG2-C3A and LX-2 cells within the liver tis-
sue constructs demonstrated their intrinsic behaviors. Over 
a period of 7 days in culture, HepG2-C3A cells remained 
within the lobules, whereas LX-2 cells were found to pro-
liferate and migrate toward the peripheries of the lobular 
units to reside in the perisinusoidal-like spaces between 
the lobules (Fig. 2), exhibiting the typical characteristics 
of HSCs in the liver. The migration and localization of 
HepG2-C3A cells and LX-2 cells within the liver tissue 

constructs were monitored by labeling the HepG2-C3A 
and LX-2 cells with blue (CMAC) and red (CM-DiI) cell 
trackers, respectively, over the period of 7 days (Fig. 2a–c). 
The localizations of HepG2-C3A cells and LX-2 cells 
within the liver tissue constructs were also clearly visible 
wherein spherical-shaped HepG2-C3A cells were located 
within the lobules and spindle-shaped LX-2 cells resided 
along the peripheries of the hexagonal lobules forming 
the hexagonal network in the perisinusoidal-like spaces 
between the lobules (Fig. 2d). In their native state, HSCs 
are located in the perisinusoidal space of the liver so as to 

Fig. 1  Fabrication of the 3D hepatic tissue model. a Schematics 
showing the steps involved in the fabrication of the 3D hepatic tis-
sue model. b Bright-field image of a 3D hepatic model. c Viability 
of HepG2-C3A cells within the 3D hepatic tissue model (HLT-1) at 
day 7. d Viability of HepG2-C3A cells within HLT-1 constructs at 

various time points. e Viability of cocultured HepG2-C3A and LX-2 
cells within the 3D hepatic tissue model (HLT-2) at day 7. f Viability 
of cocultured HepG2-C3A and LX-2 cells within HLT-2 constructs at 
different time points
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interact with hepatocytes, sinusoidal endothelial cells, and 
other hepatic cells [51].

The 3D NASH model

Palmitic acid and oleic acid were used to induce steatosis in 
the 3D hepatic tissue constructs. Initially, we investigated 
different concentrations of the palmitic acid (100–400 µM) 
and oleic acid (100–400 µM), individually or in combina-
tion (1:1 ratio) for different time periods (24 h and 48 h) to 
develop the in vitro NASH model. The induction of steatosis 
was found to be dependent on the dose of free fatty acids 
used. On the basis of preliminary observations, the HLT-1 
and HLT-2 constructs were exposed with the combination of 

oleic acid (200 µM) and palmitic acid (200 µM) at a 1:1 ratio 
for 24 h for induction of steatosis, leading to development of 
the in vitro NASH model under given experimental condi-
tions. Free fatty acid uptake and accumulation in liver cells 
within the constructs were observed by Oil Red O staining 
of fatty acids (Fig. 3a, b).

We next studied the inhibitory effects of toyocamycin and 
obeticholic acid on free fatty acid-induced steatosis in our 
3D NASH model. After 24 h of free fatty acid exposure, the 
constructs were treated with toyocamycin (20 µM) and obet-
icholic acid (20 µM), individually for 48 h. Interestingly, both 
of these drugs significantly reduced Oil Red O fluorescence 
in the NASH models, indicating the reduction of accumu-
lated free fatty acids in liver cells within the 3D liver tissue 

Fig. 2  Orientation of HSCs. a Fluorescence images of HepG2-C3A 
cells (labeled with blue cell tracker) and LX-2 cells (labeled with red 
cell tracker) within HLT-2 constructs at day 0. b Fluorescence images 
of HepG2-C3A cells and LX-2 cells within the HLT-2 construct at 
day 3, showing the spreading of LX-2 cells. c Fluorescence images 
of HepG2-C3A cells and LX-2 cells within the HLT-2 construct at 
day 7, showing the distributions of HepG2-C3A cells within the lob-

ules and LX-2 cells along the peripheries of the hexagonal lobules. d 
Fluorescence images showing the calcein AM-stained viable HepG2-
C3A cells within the lobules and LX-2 cells along the peripheries 
of the hexagonal lobules at day 7, followed by higher magnification 
image clearly showing LX-2 cells forming the hexagonal network 
within the HLT-2 construct



164 Bio-Design and Manufacturing (2021) 4:157–170

1 3

Fig. 3  Free fatty acid accumulation in liver cells. a Fluorescence 
images showing the Oil Red O-stained fatty cells within the HLT-2 
construct without free fatty acid treatment. b Fluorescence images 
showing the Oil Red O-stained fatty cells within the HLT-2 con-
struct after incubation with free fatty acids (FA, 200  µM of oleic 
acid + 200  µM of palmitic acid) for 24  h. c Fluorescence images 
showing the Oil Red O-stained fatty cells within the HLT-2 construct 
after treatment with toyocamycin (TOY, 20 µM) for 24 h. d Fluores-

cence images showing the Oil Red O-stained fatty cells within the 
HLT-2 construct after treatment with obeticholic acid (OBE, 20 µM) 
for 24  h. e Quantification of free fatty acids within the HLT-1 and 
HLT-2 constructs before and after treatment with free fatty acids for 
24 h followed by toyocamycin or obeticholic acid for 48 h. Asterisks 
represent a significant difference between the groups by pairwise t 
tests (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001, ns not significant)
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constructs (Fig. 3c, d). The free fatty acids accumulated 
within the HLT-2 and HLT-1 constructs were significantly 
lower compared to the untreated constructs. Furthermore, 
under the given conditions, obeticholic acid was found to be 
more effective than toyocamycin in reducing the accumulated 
free fatty acids from the 3D liver constructs. It was also nota-
ble that the uptake of free fatty acids, as well as their accu-
mulation in liver cells and removal after drug treatment, was 
higher in the HLT-2 constructs as compared to those in the 
HLT-1 constructs (Fig. 3e), indicating the HLT-2 constructs 
comprising of HepG2-C3A cells and LX-2 cells were com-
paratively more functional than the HLT-1 constructs, which 
had only HepG2-C3A cells (Fig. S3). Similar results were 
obtained when fatty acid accumulation within the constructs 
was assessed with BODIPY staining. BODIPY-induced 
fluorescence was reduced significantly in both toyocamycin 
(20 µM)- and obeticholic acid (20 µM)-treated NASH models 
as compared to the untreated constructs (Fig. 4a–d).

The functionality of the free fatty acid-induced NASH 
models was evaluated by measuring the albumin and urea 
produced by the liver cells within the constructs, before and 
after drug treatment. Under the normal condition, albumin 
production by the HLT-2 constructs was significantly higher 
than the HLT-1 constructs (Fig. 4e), whereas no significant 
difference was observed in the secretion of urea between the 
HLT-2 and HLT-1 constructs (Fig. 4f). The cells within the 
constructs remained viable during the steatotic process and 
continued to secrete albumin and urea under the pathologic 
NASH conditions. However, the secretion of albumin was 
critically reduced in NASH conditions; it recovered by about 
40% after treatment of either toyocamycin or obeticholic 
acid (Fig. 4e). On the other hand, even though the secretion 
of urea was significantly reduced after free fatty acid expo-
sure, no significant difference in its production was observed 
after drug treatment (Fig. 4f).

The 3D hepatic fibrosis model

Hepatic fibrosis was induced by exposing the 3D human 
liver tissue constructs to 25 ng/mL of TGF-β1 as described 
above. The induction of hepatic fibrosis was confirmed by 
the immunostaining of collagen type I. Fibrotic constructs 
exhibited significantly higher production of collagen type I, 
a typical characteristic of the fibrotic liver, as compared to 
the normal constructs in both HLT-2 (Fig. 5a) and HLT-1 
(Fig. S4A, B). Similarly, during hepatic fibrosis, HSCs 
become activated by fibrogenic cytokines such as TGF-β1 
and transdifferentiate into myofibroblasts that express α-
SMA. Therefore, α-SMA is used as a biomarker for activated 
HSCs in liver fibrosis. The development of TGF-β1-induced 
fibrotic pathological condition was further confirmed by 
immunostaining of LX-2 cells with α-SMA (Fig. 5b). The 
expression of α-SMA was not observed in control constructs.

We also studied the effect of rapamycin and curcumin on 
TGF-β1-induced fibrotic model. The HLT-2 and HLT-1 con-
structs were treated with rapamycin (10 nM) and curcumin 
(10 nM), in separate experiments, after 24 h of TGF-β1 
treatment. Both drugs significantly reduced the expression 
of collagen type I in both HLT-2 (Fig. 5c, d) and HLT-1 
(Fig. S4C─E) constructs. However, the expression of col-
lagen type I within HLT-1 constructs was comparably less 
than that within HLT-2 constructs after TGF-β1 exposure 
(Figs. 5d, S4E). Similarly, the inhibitory effects of both 
rapamycin and curcumin on fibrosis were less in HLT-1 
constructs when compared to those in HLT-2 constructs as 
demonstrated by the expression levels of collagen type I in 
HLT-2 (Fig. 5) and HLT-1 (Fig. S4) constructs.

The functionality of the TGF-β1-induced fibrotic mod-
els was evaluated by measuring the albumin and urea pro-
ductions by the liver cells within the constructs, before and 
after drug treatment. As in the case of NASH pathologic 
conditions, the cells within the fibrotic liver constructs 
secreted albumin and urea under pathologic conditions. 
Yet, the secretion of albumin was significantly reduced in 
fibrotic conditions; it recovered by about 20% after treat-
ment of either rapamycin or curcumin (Fig. 5e). On the other 
hand, no significant differences in the secretions of urea was 
observed between normal and fibrotic conditions, as well as 
after drug treatment (Fig. 5f).

Discussions

Here, we present a simple and rapid photolithographic 
biofabrication of 3D liver tissue constructs that resemble 
the in vivo-like structure of hepatic lobules comprised of 
two important cellular types of the liver, hepatocytes and 
HSCs. While hepatocytes are the major parenchymal cells 
of the liver that are responsible for metabolic, endocrine, 
and secretory functions [52], HSCs are pericytes found in 
the perisinusoidal spaces of the liver [53]. HSCs play an 
important role in hepatic fibrogenesis and contribute to the 
accumulation of collagen during chronic liver disease. In 
the normal liver, HSCs largely exist as inactive nonprolif-
erative cells but become activated by fibrogenic cytokines 
such as TGF-β1 during chronic liver disease and transdif-
ferentiate into myofibroblasts [53]. Activation of HSCs from 
quiescent cells into fibrogenic myofibroblasts has been well-
established as a driving process of hepatic fibrosis in chronic 
liver injury. Studies have shown that HSC activation not only 
is associated with hepatic fibrosis, but also contributes to 
hepatic steatosis and inflammation [54]. The biofabricated 
3D human liver tissue constructs are comprised of hexagonal 
hepatocyte lobules wherein the LX-2 cells were located in 
the peripheries of the hexagonal units (Figs. 1, 2), exhibiting 
the typical characteristics of HSCs in the liver.
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Fig. 4  Effects of free fatty acid accumulation on the liver tissue and 
treatment. a Fluorescence images showing the BODIPY-stained fatty 
cells within the HLT-2 construct without free fatty acid (FA) treat-
ment. b Fluorescence images showing the BODIPY-stained fatty cells 
within the HLT-2 construct after free fatty acid treatment. c Fluores-
cence images showing the BODIPY-stained fatty cells within the 
HLT-2 construct after toyocamycin (TOY, 20 µM) treatment for 24 h. 
d Fluorescence images showing the BODIPY-stained fatty cells within 

the HLT-2 construct after obeticholic acid (OBE, 20 µM) treatment for 
24 h. e Albumin productions by HepG2-C3A cells within the HLT-1 
and HLT-2 constructs before and after 48  h of treatment with TOY 
or OBE. f Urea productions by HepG2-C3A cells within HLT-1 and 
HLT-2 constructs before and after 48 h of treatment with TOY or OBE. 
Asterisks represent a significant difference between the groups by pair-
wise t tests (*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001, ns not significant)
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The biofabricated 3D hepatic tissue model was further 
utilized to induce two different stages of NAFLD, free fatty 
acid-induced steatosis and TGF-β1-induced hepatic fibro-
sis. Different in vitro NAFLD models have been developed 
in which hepatocytes were treated with monounsaturated 
and/or saturated free fatty acids, usually palmitic acid or 
oleic acid or combinations of these two fatty acids [55]. 
Palmitic acid and oleic acid are the most abundant fatty 
acids in both normal liver and diseased liver [56]. There-
fore, we used palmitic acid and oleic acid for the induc-
tion of steatosis in the 3D hepatic tissue constructs. The 

induction of steatosis was fatty acid dose-dependent and 
was confirmed by Oil Red O and BODIPY staining for 
free fatty acids accumulated in the liver cells (Figs. 3, 4). 
Recently, toyocamycin, an inhibiter of Inositol-requiring 
enzyme 1-alpha (IRE1α)-X-box binding protein 1 (XBP1) 
activation, was reported to inhibit free fatty acid-induced 
steatosis. It was also found to reduce palmitic acid-induced 
hepatocyte lipoapoptosis in hepatocyte culture [55]. On 
the other hand, obeticholic acid, a 6a-ethyl derivative of 
chenodeoxycholic acid, was shown to be useful for the 
treatment for NASH. Treatment for NASH in a murine 

Fig. 5  Induction of fibrosis with TGF-β1 in the 3D liver tissue model 
and effect of antifibrotic drug treatment. a Fluorescence images 
showing the collagen I and nuclei staining for cells within the HLT-2 
constructs without TGF-β1 treatment (upper panel) or after TGF-β1 
treatment (25 ng/mL, lower panel) for 24 h. b Fluorescence images 
showing the expression of α-SMA by LX-2 cells within the HLT-2 
constructs without TGF-β1 treatment (upper panel) or after TGF-β1 
treatment (25  ng/mL, lower panel) for 24  h. c Fluorescence images 
showing the collagen I- and nuclei-stained cells within the HLT-2 
constructs after rapamycin (RAP, 10  nM, upper panel) or curcumin 

(CUR, 10  nM, lower panel) treatment for 48  h. d Quantification of 
collagen I expression by cells within the HLT-2 constructs before and 
after 48 h of drug treatment. e Albumin productions by HepG2-C3A 
cells within the HLT-1 and HLT-2 constructs before and after 48 h of 
treatment with rapamycin (RAP, 10 nM) or curcumin (CUR, 10 nM). 
f Urea productions by HepG2-C3A within the HLT-1 and HLT-2 con-
structs before and after 48 h of treatment with rapamycin (RAP) or 
curcumin (CUR). Asterisks represent a significant difference between 
the groups by pairwise t tests (*p ≤ 0.05; ***p ≤ 0.001, ns not signifi-
cant)
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model with obeticholic acid prevented chronic inflamma-
tion and liver fibrosis [56]. Consistent with previous stud-
ies, the free fatty acids accumulated within the HLT-2 and 
HLT-1 constructs were significantly reduced by treatment 
with toyocamycin and obeticholic acid as compared to the 
untreated constructs. However, obeticholic acid was found 
to be more effective than toyocamycin in reducing the 
accumulated free fatty acids within the 3D liver constructs. 
Further, secretion of albumin was reduced in NASH condi-
tions but recovered by about 40% after treatment of either 
toyocamycin or obeticholic acid. In contrast, no significant 
difference in the production of urea was observed after 
drug treatment, even though its secretion was significantly 
reduced after free fatty acid treatment (Figs. 3, 4).

Similarly, hepatic fibrosis is a hallmark of chronic liver 
disease including NASH and is characterized by the excess 
production of ECM components such as collagens [57]. As 
a consequence of liver injury, quiescent HSCs get exposed 
to apoptotic hepatocytes as well as profibrogenic and inflam-
matory factors, resulting into trans-differentiation of quies-
cent HSCs into myofibroblasts that are capable of producing 
excess amounts of ECM components [58]. HSCs represent 
the major cells that produce ECM proteins, such as colla-
gens, in the injured liver. Among the different profibrogenic 
cytokines produced by hepatocytes, TGF-β plays a critical 
role in the development of hepatic fibrosis. Multiple experi-
ments in animal models and human clinical studies have 
shown increased TGF-β signaling during hepatic fibrosis 
[59] causing cell damage along with enhanced secretion of 
profibrogenic and inflammatory cytokines that lead to the 
apoptosis and hepatic fibrogenesis, as well as carcinogen-
esis [60]. We induced hepatic fibrosis by exposing the 3D 
human liver tissue constructs to 25 ng/mL of TGF-β1 and 
confirmed it by the immunostaining of collagen type I, as 
well as by immunostaining of LX-2 cells with α-SMA as 
HSCs transdifferentiate into myofibroblasts in the presence 
of fibrogenic cytokines such as TGF-β1 (Fig. 5).

Several studies have shown that rapamycin, a bacterial 
macrolide antibiotic, blocks cell proliferation by inhibiting 
the G1/S transition of fibroblasts and thus has been used for 
treating fibrotic diseases [61]. Similarly, recent studies have 
reported that curcumin, a main component of turmeric, inhib-
its hepatic fibrosis and cirrhosis via the nuclear factor kappa 
B (NF-κB) pathway [62], while other studies have shown the 
anti-inflammatory and antioxidant properties of curcumin [63]. 
Antifibrotic effects of rapamycin and curcumin were assessed 
on TGF-β1-induced 3D hepatic fibrotic model and found that 
these drugs reduced the expression level of collagen type 
I, indicating the inhibition of TGF-β1-induced fibrosis in a 
3D hepatic model. While the secretion of albumin was sig-
nificantly reduced in fibrotic conditions that was recovered by 
about 20% after treatment of either rapamycin or curcumin, no 

significant differences in the secretions of urea were observed 
under fibrotic and drug-treated conditions (Fig. 5).

In conclusion, the 3D hepatic tissue model presented here 
has the potential to facilitate the development of models of 
various liver diseases and testing of liver-directed drugs. The 
hepatic tissue constructs were fabricated separately, one at 
a time. It is possible, however, to fabricate these mini-livers 
concurrently at a much higher throughput [28]. Despite sev-
eral clinical trials, there are no United States Food and Drug 
Administration (FDA)-approved drugs for the treatment for 
NASH and NAFLD [64]. Therefore, improved and physi-
ologically relevant in vitro hepatic disease models are in 
urgent need to facilitate the study of underlying mechanism 
of the pathogenesis of the diseases, as well as for rapid pre-
diction of drug responses. A step beyond, we have further 
demonstrated the feasibility of producing human primary 
hepatocyte-based 3D hepatic tissue models, where free fatty 
acid treatment induced lipid accumulation (Fig. S5A). Simi-
larly, TGF-β1 treatment led to fibrosis (Fig. S5B), where 
additional inclusion of LX-2 HSCs seemed to promote col-
lagen deposition comparing to the monoculture of primary 
hepatocytes (Fig. S5C).
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